Population dynamical behaviors of stochastic logistic system with jumps
نویسندگان
چکیده
منابع مشابه
Population dynamical behaviors of stochastic logistic system with jumps
Abstract: This paper is concerned with a stochastic logistic model driven by martingales with jumps. In the model, generalized noise and jump noise are taken into account. This model is new and more feasible. The explicit global positive solution of the system is presented, and then sufficient conditions for extinction and persistence are established. The critical value of extinction, nonpersis...
متن کاملStochastic functional population dynamics with jumps
In this paper we use a class of stochastic functional Kolmogorov-type model with jumps to describe the evolutions of population dynamics. By constructing a special Lyapunov function, we show that the stochastic functional differential equation associated with our model admits a unique global solution in the positive orthant, and, by the exponential martingale inequality with jumps, we dis...
متن کاملstochastic functional population dynamics with jumps
in this paper we use a class of stochastic functional kolmogorov-type model with jumps to describe the evolutions of population dynamics. by constructing a special lyapunov function, we show that the stochastic functional differential equation associated with our model admits a unique global solution in the positive orthant, and, by the exponential martingale inequality with jumps, we dis...
متن کاملStochastic dynamics and logistic population growth.
The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated for different populations and are related to the reproductive fitness and the competition for limited resources, respectively. We investigate analytically and numerically the simplest p...
متن کاملStochastic Differential Equations with Jumps
Gradient estimates and a Harnack inequality are established for the semigroup associated to stochastic differential equations driven by Poisson processes. As applications, estimates of the transition probability density, the compactness and ultraboundedness of the semigroup are studied in terms of the corresponding invariant measure.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS
سال: 2014
ISSN: 1300-0098,1303-6149
DOI: 10.3906/mat-1307-25